
New MIDAD Design
Brett Viren

bv@bnl.gov

Brookhaven National Lab

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.1/21



Talk Outline

1. Strategy of new MIDAD framework.

2. MVC implementation

3. Gui wrappers
(a) libsigc++ signal/slots
(b) libsigc++ memory management

4. Scenes, Scenery, SceneElements
(a) How to.

5. Displays

6. Ranges

7. NamedFactory and NamedProxy

8. Still to do

9. MIDAD Demo

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.2/21



Strategy of new MIDAD Framework

Continue to follow Model-View-Control (MVC) pattern.

Use ROOT for graphics and GUI, but otherwise keep it at bay.
Only use where necessary, wrap and sanitize where possible.
Minimize the need to run rootcint.

Rely on libsigc++ for signal/slots and memory management.

Most classes are in namespace Midad. Exception for Gui
related, including Range (separate lib one day?) and
JobControl interface (JOBCMODULE CPP macro didn’t like
namespaces).

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.3/21



Strategy of new MIDAD Framework

Continue to follow Model-View-Control (MVC) pattern.

Use ROOT for graphics and GUI, but otherwise keep it at bay.
Only use where necessary, wrap and sanitize where possible.
Minimize the need to run rootcint.

Rely on libsigc++ for signal/slots and memory management.

Most classes are in namespace Midad. Exception for Gui
related, including Range (separate lib one day?) and
JobControl interface (JOBCMODULE CPP macro didn’t like
namespaces).

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.3/21



Strategy of new MIDAD Framework

Continue to follow Model-View-Control (MVC) pattern.

Use ROOT for graphics and GUI, but otherwise keep it at bay.
Only use where necessary, wrap and sanitize where possible.
Minimize the need to run rootcint.

Rely on libsigc++ for signal/slots and memory management.

Most classes are in namespace Midad. Exception for Gui
related, including Range (separate lib one day?) and
JobControl interface (JOBCMODULE CPP macro didn’t like
namespaces).

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.3/21



Strategy of new MIDAD Framework

Continue to follow Model-View-Control (MVC) pattern.

Use ROOT for graphics and GUI, but otherwise keep it at bay.
Only use where necessary, wrap and sanitize where possible.
Minimize the need to run rootcint.

Rely on libsigc++ for signal/slots and memory management.

Most classes are in namespace Midad. Exception for Gui
related, including Range (separate lib one day?) and
JobControl interface (JOBCMODULE CPP macro didn’t like
namespaces).

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.3/21



Model-View-Control (MVC)

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.4/21



Model

Encapsulates a type of data (eg. a CandHandle) plus meta
data.

Exports an API to modify that data.

Provides modified signal.

class CandModel<CandHandleType>
base class manages handle, calls bool Update() when new
MomNavigator is set, if true returned, emits modified().

One concrete example:

class DigitListModel

: public CandModel<CandDigitListHandle>

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.5/21



View

Implements a representation of a Model.

View base class is templated on Model type.

Attaches to Models modified signal.

Calls virtual Configure(ModelType&) when Model is
modified.

Manages Model (via SigC::Ptr).

Concrete View implements Configure to reconfigure itself.

Concrete View typically subclass some other graphical class

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.6/21



Control

Modifies a Model.

Control base class is templated on Model type.

Manages Model (via SigC::Ptr)

Concrete class is typically owned by some other (possibly
graphical) class.

A class implementing a View can still have Controls.

Should trigger global_update signal at the end of the
modification of the Model (allows compound commands, This
needs work).

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.7/21



Gui and libsigc++

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.8/21



Gui wrappers

The Gui* classes wrap ROOT’s TG* classes in order to:

Clean up and simplify the TG interface

Provide libsigc++ signals

Provide child widget memory management (via SigC::Ptr)

Features:

Gtkmm design style loosely followed

Children are passed by reference to parents, lets Widgets to
be created on stack or heap

TGLayoutHints are mostly unneeded or simplified

Menu creation is much simpler

Sliders, etc, use Ranges MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.9/21



libsigc++ signal/slots

Any useful Rt signals from the TG interface are exported as libsigc++
signals. Rt signals continue to work, but not used by MIDAD.

In the Rt method, Signal must be a TQObject, slot must be a
ROOTified object:

tqobj.Connect("ItsSig()","SomeClass",&rootobj,"AMethod()");

With sigc++, any object can hold a signal object and the slot
can be either a SigC::Object or a generic object:

any_obj.its_sig.connect(slot(an_obj,&SomeClass::AMethod));

any_obj.its_sig.connect(slot_class(an_obj,&SomeClass::AMethod));

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.10/21



Benifits of libsigc++

Use the magic of bind:
SigC::Signal0<void> SomeObject::its_signal;

void Class::Method(int);

any_obj.its_sig.connect(bind(slot(*ptr,&Class::Method),42));

Slots are first class objects:
SigC::Slot0<void> make_slot(void);

any_obj.its_sig.connect(make_slot());

Chain slots together:
void set(int i) { g_something = i; }

int get() { return g_somethingelse; }

SigC::Signal0<void> sig;

sig.connect(SigC::chain(SigC::slot(set),SigC::slot(get)));

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.11/21



Benifits of libsigc++ cont.

Save the connection:
Connection con = obj->its_signal.connect(slot(some_func));

obj->its_signal.emit(); // some_func() is called

con.block(true);

obj->its_signal.emit(); // some_func() is not called

con.block(flase);

obj->its_signal.emit(); // some_func() is called

con.disconnect();

obj->its_signal.emit(); // some_func() is not called

Chain signals:
Signal0<void> sig1, sig2;

sig1.connect(slot(some_func));

sig2.connect(sig1.slot());

sig2.emit(); // some_func() is called via sig2

// triggering sig1’s emittance

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.12/21



libsigc++ memory management

Templated reference counted smart pointer (SigC::Ptr<>) used
internally to libsigc++, but exported. When Ptr is deleted, so shall
object if it was managed and no other Ptrs reference it:
{

SigC::Ptr<SomeObject> obj;

{

SigC::Ptr<SomeObject> obj1 = manage(new SomeObject());

SigC::Ptr<SomeObject> obj2 = manage(new SomeObject());

SomeObject* obj3 = manage(new SomeObject());

obj = obj2

// obj1, obj2 lives

}

// obj1 is deleted, obj2 lives on, obj3 is leaked

SomeObject obj4;

obj = &obj4; // ok. obj1 is now deleted.

obj = manage(new SomeObject()); // ok. obj4 is not deleted

}
MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.13/21



Scenes, Scenery, SceneElements

Scene A TPad which knows about and manages Scenery. Contains
a Scene type. Calls TPad::Modified in response to
Scenery’s modified signal. Calls TPad::Update in response to
global_update.

Scenery Intended as the TPad/ROOT side of a graphical View. It is a
TObject which draws into a Scene, possibly via other TObjects
or SceneElements. Most concrete Scenery will also subclass
some View. Emitts modified signal.

SceneElements Additional API for objects going into a Scene. Allows
for, eg. pointer interaction. Most graphical “primitive” objects
will inherit from this as well as some complex graphical
TObject, eg TBox.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.14/21



Scenery HOWTO

1. Inherit Scenery and (probably) some View<ModelType>

2. In .cxx file:

static Midad::SceneryProxy<Midad::YourConcreteScenery>

gsYourConcreteSceneryProxy("Scenery::YourConcrete");

3. Implement Configure(ModelType& mymodel)

this->ClearPrimitives();

// Query Scene:

PlaneView::PlaneView_t pv = this->GetScene()->GetViewType();

// Add TObject or TObject + SceneElement

this->AddPrimitives(new TBox(0.2,0.2,0.8,0.8));

this->AddPrimitives(new MyConcreteSceneElement(mymodel));

// ...

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.15/21



Displays

The Display base provides a widget with a menu, button and
status bar as well as a central widget in which subclasses place
things.

Subclasses are aggregations of Scenes, Gui widgets or Gui
Views.

Currently one Display implemented: SceneDisplay holding a
single Scene and a couple of GuiSliders.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.16/21



Ranges

Simple templated encapsulations of a min and max value.

Follows MVC pattern (sort of).

Emits modified signal when min/max change.

Template gives type of min/max value. RangeDouble typedef
most used.

Usually shared via SigC::Ptr

Used by Scenes for X-Y zooming (eventually color scale),
Scenery for bounds, GuiSlider, Models for state data.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.17/21



NamedFactory and NamedProxy

NamedFactory is a singleton map of strings to NamedProxy’s.

Concreate NamedProxy’s register themselves at link time.

Proxies are looked up at run time to list (menu) and create
subsystem objects.

Concrete proxies have a ConcreteProxyBase class and a
templated ConcreateProxy

Concrete proxies can hold lists of all instantiated objects and
emit signals when more objects are created or more proxies
are linked in.

Currently Displays and Scenery use proxies.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.18/21



To do - near term

Currently Concrete Proxies use a Create() method, want to
move to a more general SigC::Slot based scheme.

Implement more scenery (DigitList and TrackList so far, but
lacking some features).

Work out configuration scheme - all interactive now, friendly but
tedious.

Export enough MIDAD API and do it all in a ROOT .C?

Use DBI/Registry mechanism?

Some custom config language? XML?

Implement any missing functionality in the first MIDAD

Work through the remaining “to do”s from the first MIDAD.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.19/21



To do - far term

Work out how to “connect” different data, (eg. Click on a hit, all
other hits in track/shower light up

MC objects, wait for Hugh.

Job path MVC, Job module config interface.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.20/21



MIDAD Demo

Cross your fingers.

MINOS Collaboration Meeting and Software Workshop, Jan 2002 – p.21/21


	Talk Outline
	Strategy of new MIDAD Framework
	Model-View-Control (MVC)
	Model
	View
	Control
	Gui and libsigc++
	Gui wrappers
	libsigc++ signal/slots
	Benifits of libsigc++
	Benifits of libsigc++ cont.
	libsigc++ memory management
	Scenes, Scenery, SceneElements
	Scenery HOWTO
	Displays
	Ranges
	NamedFactory and NamedProxy
	To do - near term
	To do - far term
	MIDAD Demo

